

REMEDIATION AND REUSE OF CONTAMINATED SEDIMENTS: A NEW PHYSICAL-CHEMICAL PROCESS TO THE POINT

POLITECNICO

DI MILANO

G. Ferrari, A. Careghini, S. Dastoli, L.Bonomo, L.DePropris, M.Gabellini, S.Saponaro

2nd International Workshop: Mechanism and Modelling of Waste/Cement Interactions Le Croisic, October 12-16, 2008 october 2008

Analytical results of most contaminated sediment selected for this work (600.000 m³)

Compound	Concentration (mg/kg d.w.)	-
Chromium (total)	91	
Copper	210	
Nickel	22	-
Lead	51	
Zinc	314	
Arsenic	18	1. S
Cadmium	1	San A
Mercury	200	
НСВ	0,003	and a second
PAH (total)	5	
PCB (total)	3	Sale -
>C12 petroleum hydrocarbons	5 000	
PCDD/F	2,8 ⋅ 10 ⁻⁴	

TBT

2 petroleum ocarbons	5 000	-	750	1 000
D/F	2,8· 10 ⁻⁴	0,3 · 10 ⁻⁴	1 · 10 ⁻⁴	1 · 10 ⁻²
	0,003	0.07	-	2 500

Ordinary Solidification/Stabilization (S/S) processes aims at encapsulating wastes into a solid cement matrix (Solidification) and decreasing mobility and toxicity of inorganic contaminants (Stabilization)

Poor attention has been paid in the past to impart to S/S materials good mechanical properties in a form which could allow their reuse. The reason for this is that, in Italy, S/S process has been normally used to reduce leaching before landfill disposal.

THE OBJECTIVE OF THIS STUDY IS TO EVALUATE THE EFFICIENCY OF A NEW PHYSICAL-CHEMICAL PROCESS FOR THE TREATMENT OF LARGE VOLUME OF CONTAMINATED SEDIMENTS FROM AUGUSTA BAY

REUSE OF RESULTING S/S MATERIAL

MAPEI HPSS SYSTEM High Performance Solidification/Stabilization 2 STEPS

first step: production of a cementitious granular material, based on principles of high performance concrete (HPC)

- use of superplasticizers and hydrophobic additive to reduce W/C and to improve watertightness
 - ⇒ Environmental aspect
 - ⇒ Service life
 - ⇒ Mechanical properties

LOWER W/C AND HIGHER WATERTIGHTNESS MEANS

Lower permeability

HIGHER

DURABILITY

Stronger bonds

HIGHER MECHANICAL STRENGTH

First step: granulation

High shear mixer

Formulation:

- Augusta harbour sediment (60%, dry basis)
- Cement (CEM I, 52.5) (21%)
- Additives: Mapeplast ECO 1-A e ECO 1-B (2 %)
- Water (17%)

W/C+S = 0.2

W/C = 0.8

First step: granulation

INDUSTRIAL PLANT CAPACITY 4m³/h

MAPEI HPSS SYSTEM High Performance Solidification/Stabilization 2 STEPS

Second step: thermal vacuum distillation (TDV) of the granular materials from step 1. It is necessary when soil or sediments contain organic/volatile/semivolatile contaminants.

- Control Low temperature distillation (max 250 °C) under high vacuum (≤20 mm Hg)
 - \Rightarrow No degradation of cement matrix
 - No gas emissions because the process is operating in high vacuum conditions
 - No dust problems because the process is operated on the granular materials

THERMAL VACUUM DISTILLATION EQUIPEMENTS LAB SCALE (LEFT) – PILOT SCALE (RIGHT)

🐼 MAPEI

FISRST STEP - CEMENT HYDRATION

XRD after 24 hours

XRD after 28 days

- no negative effect of sediment on set and hydration rate
- portlandite consumption
- monocarbonate formation

FISRST STEP - CEMENT HYDRATION

ESEM images after 24 hours of hydration

Fine quartz sand mortar W/C = 0.8 Sediment based granular material W/C = 0.8

FISRST STEP - CEMENT HYDRATION

ESEM images after 7 days of hydration

Fine quartz sand mortar W/C = 0.8 Sediment based granular material W/C = 0.8

FISRST STEP - CEMENT HYDRATION

ESEM images after 28 days of hydration

Fine quartz sand mortar W/C = 0.8 Sediment based granular material W/C = 0.8

Results of morphological analysis

250 °C, 4 hours

150 °C, 16 hours

Results of chemical analysis (1/3)

Results of chemical analysis (2/3)

Results of chemical analysis (3/3)

SECOND STEP: THERMAL VACUUM DISTILLATION TVD Results of leaching test (EN 12457-2)

SECOND STEP: THERMAL VACUUM DISTILLATION TVD Results of leaching test (EN 12457-2)

Identified problems:

- pH value too high (13) conditioning step in water
- Chlorides
- Selenium

BEFORE VTD

CONDITIONING STEP IN WATER FOR 7 DAYS

AFTER REHYDRATION

CONCLUSIONS (1/2)

- 1. MAPEI HPSS TREATMENT WAS EFFECTIVE IN STABILIZING INORGANIC AND REMOVING VOC AND SVOC WHEN APPLIED TO MARINE SEDIMENT OF THE AUGUSTA HARBOUR (SICILY)
- 2. HYDRATION RATE WAS NOT AFFECTED BY THE SEDIMENT, BUT CHEMICAL INTERACTION BETWEEN CEMENT AND SEDIMENT WERE EVIDENT (PORTLANDITE CONSUMPTION, MONOCARBONATE FORMATION AND MORPHOLOGICAL MODIFICATION OF THE HYDRATED MATRIX)
- 3. THERMAL TREATMENT OF HYDRATED GRANULAR PRODUCTS HAD A POSITIVE EFFECT IN REDUCING THE LEACHING OF COPPER, NICKEL AND COBALT
- 4. THERMAL TREATMENT OF HYDRATED GRANULAR PRODUCTS DECOMPOSED AFt AND AFm PHASES BUT REHYDRATION IN WATER PROMOTE THEIR REFORMATION

CONCLUSIONS (2/2)

5. THERMAL TREATMENT OF HYDRATED GRANULAR PRODUCTS AT 250 °C DID NOT CAUSE THE DEGRADATION OF THE CEMENT MATRIX AND THE RESULTING PRODUCTS SHOWED GOOD MECHANICAL PROPERTIES FOR REUSE OPTION

FUTURE DEVELOPMENTS

- a. Pollutants mass balance
- b. More complete tests for physical and mechanical properties and durability (total porosity, Los Angeles, Micro-Devall, alkali-silica reaction, freezing-thawing) will be performed
- c. pH dependent leaching tests and leaching column test
- d. Speciation of mercury

Thank you for your attention!!!